B.A./B.Sc. Semester-II

PHYSICS (Relativity \& Electromagnetism)

Paper-A

Time Allowed-3 Hours]
[Maximum Marks-35
Note : There are FIVE questions in total. Section A is compulsory. Attempt ONE question each from Sections B, C, D and E.

SECTION-A

I. (i) What are the applications of Hall's effect?
(ii) Define skin depth.
(iii) A clock gives correct time. With what speed it be moved relative to an observer so that it may be seem to lose 1 minute in 24 hrs ?
(iv) What is the direction of force between two parallel wires carrying currents in opposite directions ?
(v) What is the phase difference between electric and magnetic field vectors of an em wave in . conducting medium and why?
(vi) Which equation shows that isolated magnetic poles do not exist ?
(vii) What is Minkowaski space?

$$
1 \times 7=7
$$

2541(2517)/STB-13926

SECTION-B

II. Starting from Lorentz transformation equation for space coordinates derive the equations for transformation of velocities. Under what conditions do these equations reduce to Galilean transformation equations for velocities ?
III. What do you understand by relativistic Doppler's effect ? Describe an expression for longitudinal Doppler's effect.

SECTION-C

IV. State and explain Hall's Effect and mention its
significance.

V. State and explain Ampere's circuital law. Use it to find
the magnetic field due to a toroid solenoid. Also derive
its differential form.

SECTION-D

VI. Calculate the work done in establishing a current I in circuit having self inductance. Hence prove that the coefficient of self inductance is numerically twice the work done in establishing a unit current in an inductor.

VII. (a) Explain the concept of displacement current and derive
an expression for the same in a region where electric
field is changing with time.
(b) What is Q -factor and find it for series resonant circuit?

SECTION-E

VIII. State Maxwell's equations for electromagnetism in free space, discussing each critically. What information do these equations furnish with regard to electromagnetic nature of light?
IX. (a) Define Poynting vector for em wave and find its average value for plane sinusoidal wave. 5
(b) What do you mean by dispersion ? Explain its types. 2

